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SUMMARY

This paper deals with planning of experiments in partially balanced incomplete block
designs with rectangular association scheme (RT PBIB). Some methods for construc-
tion of RT PBIB which can be applied to two-factor experiments are given. Incidence
matrices of these designs can be obtained from Kronecker product generalization of
the selected matrices. Attention is called to statistical properties of these designs
connected with the estimation of the natural and elementary treatment contrasts.
Catalogue of RT PBIB designs for 6, 8, 10 and 12 treatments whose number of tre-
atment replications r satisfies inequality 2 < r < 15 is included.

KEY WORDS: two-factorial experiments, Kronecker product of matrices, balanced
matrices, RT PBIB designs

1. Introduction

The most important block designs include partially balanced incomplete block designs
based on the rectangular association scheme with three association classes (RT PBIB).
The RT PBIB design is such an experimental plan in which v treatments are arranged
in b blocks of size k, while each treatment occurs r times and in the given block it
can occur at most once. Furthermore, the treatments may be divided into m groups
of v* distinct treatments each (v = mov*) such that two treatments belonging to the
same group occur in A; blocks and each pair of treatments from different groups with
equal numbers in groups occurs in Ay blocks, otherwise they occur in Az blocks. The
numbers v =mv*, b, r, k,ny =v* — 1, ng=m—1,n3 = (v* —1)(m —1), A1, A2 and
A3 are called the parameters of the design.
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If N = (n;;) is a (v x b) incidence matrix of RT PBIB design, then from the
above definition we have

NN’ = 7Ag + A1A7 + A9 Ag + A3Ag, (11)

where Ag =1, Ay =1, @ (Jpu —Lpu), Ag = (i — L) @ Lps, Ag = (T — 1) ®
(Jys — Ii), while I; is the unit matrix of order =, J, is a (z x z)-matrix of ones and
® denotes the Kronecker product of matrices. Note that A1, = n11l,, Asl, = nal,,
A3l, = n3l,, where 1, denotes vector of v ones.

The RT PBIB designs can be recommended for experimenters due to two basic
reasons. They possess favourable statistical properties, and furthermore, they can be
used in two-factorial experiments. These problems, connected with the estimability
of treatment contrasts, are explained in the third part of this paper.

Construction of RT PBIB designs consists in finding incidence matrix N satisfy-
ing (1.1). In Section 4, plans of these designs for 2 <r < 15,2 <k <11 and v < 12
are given. These designs can be obtained by a method presented in the next section
of this paper. This method is based on the notion of extending the binary case of
Kronecker product of matrices (Brzeskwiniewicz et al., 1996).

2. Constructions of RT PBIB designs

We are going to use three notions: balanced block designs, balanced matrices and
generalization of the Kronecker product of matrices.

DEFINITION 2.1. (see, e.g., Raghavarao, 1971). A balanced incomplete block design
is an arrangement of v* treatments in b* blocks of sizes k* such that every treatment
occurs 7* times and every pair of distinct treatments is contained in exactly A* blocks.

Ceranka and Goszczurna (1994) give a complete list of these incidence matrices
for v* < 20, r* < 15,2 < k* <v*/2 and an additional remark about the construction
with v*/2 < k* <v* — 1.

The following definition is due to Shah (1959):

DEFINITION 2.1. Let A be a (mXn) matrix whose elements take the s values 1,2, ..., s.
We shall call matrix A a balanced matrix in s integers if the following conditions are
satisfied:

1°. The number of times the integer p(p = 1,2,...,s) occurs in a column is the
same for all the columns and it is equal c.

2°. The number of times the integer p(p = 1,2, ..., 8) occurs in a row is the same
for all the rows and it is equal to ,, .

3°. The number of times the combination p and ¢ (or ¢ and p, p # q, p, ¢ =
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1,2,...,8) occurs in a pair of rows is the same for all the pairs of rows and it is equal
t0 Ypq-

Shah (1959) gives a complete list of these matrices for m, n < 15 and s > 3.
When we take a smaller number s, according to lemma 2.3 (quoted in the work
mentioned above), it is not difficult. Balanced matrix A will be sometimes written in
the form A(1,2,...,s), underlining that there occur all elements 1,2, ...,s. Matrices
A(1,2,3,4,...,4), A(1,2,3,...,3)and A(1, 2, ..., 2) are thus balanced matrices in s = 4,
s =3 and s = 2 integer, respectively. Also A(1,2) = N, + 2(Jy — N), where N is
the incidence matrix of a BIB design, is a balanced matrix in s = 2 integers. Only
these matrices will be used in this paper.

The following definition was used by Brzeskwiniewicz et. al. (1996) (after Shah,

1959):
DEFINITION 2.3. Let A = A(1,2,...,s) be a (m x n) balanced matrix in s integers
and let there be s (v* x b*) matrices N; (¢ = 1, ..., s). If we replace the integer 7 in
the matrix A by the matrix IN; , then we shall call it (i.e., matrix A(N7, Ny, ..., Njy))
an extended binary Kronecker product (EBKP) of matrices A and N; and we denote
it by A®(Ny, Ny, ..., Ny).

The following theorems will be used in this paper:

THEOREM 2.1. Let A = A(1,2,3,4), Ny p«, 0. . J . . be, respectively, a (m x n)
balanced matriz in s = 4 integers, a (v* x b*) incidence matriz of BIB design with
parameters v*, b*, r* k*, A" # 0, a (v* x b*) null matriz and a (v* x b*) matriz of
ones. Then

N = AQ(Ny= b=, 0ue b=, Joe b+, Toe b= — N )
s an incidence matriz of RT PBIB design with parameters:
v=mv*, b=nb*, r = fir* + Bab* + 0,(0* —r*), k = ark* + agv* + ay(v* — k*),
n=v"—1,ng=m—1,ng=(v*—1)(m—1), A&y = B A" + B3b* + B4(b* — 2r* + \"),
Ao =117 + Yiar" + Y34 (BT — ) + v33b” + 144 (b —17),
A3 =Y A" + Y1am Y14 (r" — A7)+ v5a (B — 1)+ v33b* + y4e(bF — 2% + XY),
where a1, &g, o3, 04, By, By, B3, Bas V115 V135 V14> V33, V34> Vaa are the same as in Defi-
nition 2.2.
Proof. Follows immediately after substituting NV in place of N in (1.1). O

We can also prove that Theorem 2.1 is true for s = 3 and s = 2, which yields the
following result.

CoroLLARY 2.1. If A = A(1,2,3) is a balanced matriz in s = 3 integers, then

1 —_
Ng,%,:} = A®(Nu*,b* ) 0'..*,1>* ’ Jw*,h* )7
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N1%4 = A®(NU~,b*>0w~,wJM,M — Ny~ b*): if Y11 #0,
Nﬁ%,‘l = A®(Nv“,b""] Ju*,b‘ . NU*,b*)

Ve, )

are incidence matrices of RT PBIB designs with parameters as in Theorem 1.1 with
the omission of components not containing indices mentioned in N1,

Condition 'yll # 0 in Corollary 2.1 and omission of the remaining matrices N(lf%’:,,,

NS%A’ and N1 3.4 follow from the exclusion of the particular case Ay = As.

COROLLARY 2.2. If A = A(L,2) is a balanced matriz in s = 2 integers, then

1

N{} = A®(N,.;.0,.,.),

Nglg = AQ®(N,. b*7 ,*), if 11 # 0,
1

N(I,Z - ( v* b*’ Jb* VNU',b")

are incidence matrices of RT PBIB designs with parameters obtained as in Corollary
2.1.

THEOREM 2.2. If A = A(1,2,3,4) is a (m x n) balanced matriz in s = 4 integers
with 17 # 0 or 44 # 0 then

N® = A®(1,.,0,.,3.,J. —1L,.)

is an incidence matriz of RT PBIB design with parameters

v=mv* b=nb* r=p0;+ 830"+ B4(v* = 1), k=1 + o3v* + as(v* — 1),

ng=v"—1,ne=m-—1,n3g=(v*—1)(m—1), Ay = Bz0* + B4(v* — 1),

A2 = Y11 + V330" + Yaa(v* — 1) + 713 + v34(v7 — 1),

A3 = 33 + Vaa(v* = 2) + Y13 + Y14 T V3 (V" — 1),

where o, as, a4, B1, 03, Bas Y11, V13> V14> V33> V34, Yaa are the same as in Definition

Proof. Follows immediately after substituting N in place of N in (1.1). O
When s = 3 and s = 2, Theorem 2.1 yields the following

CoROLLARY 2.3. If A = A(1,2,3) is a balanced matriz in s = 3 integers, then

Ng%%,3 . A®(Iu" ) 0,,*,1.* ) J“* )7 1’f T11 7é 0
Nf%A = A®(1,.,0,. .,J.—1.), if y11 #0 ory33 # 0,
N, = A8, 3.3, —L.), if 711 #0 or 755 0
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are incidence matrices of RT PBIB designs.

COROLLARY 2.4. If A = A(1,2) is a balanced matriz in s = 2 integers, then
NG = A&®,..J.), if yu #0,
N = A®.,J,.-1.), f y11 #0 or 79 #0,

are incidence matrices of RT PBIB designs. Parameters of the designs obtained in
Corollary 2.8 and 2./ are analogical as in Corollary 2.1.

3. Estimability of treatment contrasts in RT PBIB designs

RT PBIB designs have favourable statistical properties connected with the estimabi-
lity of the basic and elementary treatment contrasts. Note first that the association
matrix (1.1) can be equivalently written in the spectral form

NN’ = PoXo + p1X1 + poXa + p3 X3, (3.1)

where pg =7+ (v* = DA+ (m—DAe+ (0* = 1)(m—1DA3 =71k, py =7— A1 + (m —
Ddg—(m—1DAz, pp =7+ @ — DA — A — (v* —1)Az and p3 =7 — A1 — Ay — A3 are
latent roots of NN’ with multiplicities equal to 1, v* —1,m — 1 and (v* —1)(m — 1),
respectively, and

Xy = %(Ao + A+ A+ As) =T, /v,
X; = %((v* ~1)Ag+ A1 + (0" — D)Ag = Ag) = I /m ® (L — Jue J07),
Xo = T((m= Ao+ (m= A1~ Ar ~ Ag) = (ln = In/m) © J- /1,
X, = %((m CD)(v" = ) Ag — (m—1)A; — (v — 1)Az — Ag) =

= (Tn— T /) ® (L — Tor 27).

In the intra-block analysis of variance, a great role is played by matrix C, which
in the case of N1, = r1, and N'1, = k1, (RT PBIB designs satisfy this) takes the
form C =rI, — NN’/k. Hence, from (3.1) we have

C =poXo + 11 X1 + 1 Xz + p3X3, (3.2)

where p; = r—p;/k, i =0,1,2,3, are latent roots of C with multiplicities as in (3.1).
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From (1.1), (3.1) and (3.2) it follows that the Moore-Penrose inverse of C can be
expressed as

3
Ct=> p'X; o Cr=> dA; (3.3)
i€l i=0
where I = {j : jij # 0} and di = ¥ e, p; 27, while 210 = =, 2%0 = =,
230 — (7 —1)(m £ N b G _%’ 221 — mv—l, 231 — _mv—1, 212 vv—17 222 _ _%,
232 = 1=vt 13__%’223:_; M=l
In the case of connected designs we have I = {1,2,3} and therefore dy = 1 (£ m =14
1
m_1+ m—1)(v" 71) d :l(_l_i_m 1 _ m— 1)’d2:l(v -1 _ 1 _w 1),d3:

1#2 ] ) H3 " ’ | K1 [2%]
e
Consider the vectors:

K3 A Ha U3

Pii = Pr®Ly/||pl®@Ly-|,i=1..,m—1,
P2y = 'm®pj /” m®p] Hv .7 = 1,...,’0* _1>
ps; = Pl ®py/|prepy |,

where p?* are any collections of m—1 mutually orthogonal vectors with m components,
satisfying the condition (p*)'1,, = 0. Similarly, the vectors p}’* are any collections
of v* — 1 vectors with v* components satisfying (p}’*)’lw* =0, and || x ||= vx'x. For
example we can assume:

pir=[m-1,- 1] py=[0,m-2-1,.,-1,...,p;_; =0,..,0,1,—1]
and

pY =[v*—1,-1,..,=1],py =[0,v* ~2,~1,...,—1],..,p%_, = [0,...,0,1,—1]".

The following equalities hold:

Cp1; = poP1i, Cpyj = 1P2j, CPaij = K3Psij, (3.4)
i.e., p1i, P2: and ps;; are latent vectors of C.
It is known that in fixed linear models for block design variances of the estimators
of treatment contrasts pj;t, ps;t and pg;;t,when p; # 0, are equal (cf. 3.4) to

2 J— = g2
Var(pi;t) =—, Var(py;t) =—, Var(pj;t)=—, 3.5
(1)“2 (zj)ul (3,)#3 (3.5)

where t is an unknown column vector of treatment parameters and ¢? denotes the
error variance of the intra-block analysis. From (3.5) it follows that contrasts from the
first group (determined by vectors pi1;, ¢ = 1,...,m — 1) are estimable with the same
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variances (or all are nonestimable when py = 0), a similar situation is with contrasts
from the second group (determined by vectors poj, j = 1,...,v*—1) and from the third
group (determined by vectors paij, ¢ = 1,....,m—1, j = 1,...,v* — 1). These contrasts
will be called the basic contrasts. The variances ‘;—2 are smaller (what is a favourable
property) if and only if u; are greater. The above situation can be applied to select an
incidence matrix IN. This is interesting in case of two-factorial experiments, in which
m denotes the number of levels for factor A, and v* denotes the number of levels for
factor B. Then, we assume as treatments the combinations of the levels of the factors
and we assume the lexicographical order A;By, A1By, ..., A,,,B,-. Then, vectors py;
determine the main effects of the factor A, vectors py; determine the main effects of
the factor B, and vectors pg;; determine the interaction between the factors A and
B (A xB).

Let us consider the elementary contrasts, i.e. contrasts determined from vectors
with only two nonzero components: 1 and —1. Variances of estimators of these
contrasts are equal to: 202(dy — dy), 20%(dy — dy) or 202%(dy — d3), depending on
whether the contrast refers to a pair of treatments occurring in A;, Ag or Az blocks.
Variances for any pair occurring in the same number of blocks are equal. In the
selection of incidence matrix N, we should pay attention to the fact that the group
of elementary contrasts being in the focus of the investigator s interest, has a smaller
value of dg —d; (¢ = 1,2,3). In case of two-factor experiments, the contrasts from the
first group (for A1) serve for the comparison of any two levels of factor B (for a fixed
level of factor A). Similarly, the contrasts of the second group (for Ay) can compare
any two levels of factor A (for a fixed level of factor B); and for the third group (for
Asz), the contrasts can compare two selected combinations A;B; and AyBj/ (with
i # 1 and j £ 7).

Summing up, one can state that favourable statistical properties of the discussed
block designs consist in the fact that basic and elementary contrasts can be divided
into three groups. All contrasts belonging to one group are either estimable with
the same variances or are nonestimable. In two-factorial experiments, an additional
convenience consists in the fact that the particular groups of contrasts, both the ba-
sic and the elementary ones, are connected with factor A, factor B, and the A x B
interaction, respectively. This permits to solve in a simple way the problem of expe-
riment planning: we select a design with the highest p; value (for basic contrasts) or
the smallest dy — d; value (for elementary contrasts). The y, and dg — d; values are
calculated as in (3.2) and (3.3) on the basis of design parameters given in the plans
in the next chapter.
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4. Parameters and plans of RT PBIB designs

Below we present parameters and plans of RT PBIB designs for 6, 8, 10 and 12
treatments. This is a full list of designs that can obtained by methods presented in
this paper for v <12 and 2 < r, k£ < 15. No designs have been obtained for v = 9, and
we omit situations: Ay = Ag and m = v*, A\; = A3 and Ay = A3. Designs satisfying the
above conditions can be reduced to group divisible designs whose plans were given by
Clatworthy (1973).
v=6,m=3,v*=2,b=6,r:2,k=2, 77,1=1, 77,2:2,”3:2, /\1=0, )\2=0, /\3=1
(1?6)’(275)7(475)7(3!6)’(213)7(174)
v=06m=3,0v"=2,b=12r=4,k=2,n1=1,m2=2,n3=2, A =0, =0, A3=2
(1,6),(2,5),(4,5),(3,6),(2,3),(1,4)
This plan should be repeated twice
v=6m=3,0"=2,b=18r=6k=2,nm=1,n=2,n3=2,A=0,A2=0 ) 3=3
(1,6),(2,5),(4,5),(3,6),(2,3),(1,4)
This plan should be repeated three times
v=86m=3,v"=2,0=24,r=8,k=2,nm=1,n2=2,n3=2, 21 =0, A =0, A3 =4
(1a6)7(2’5)7(415)1(316)1(273)7(174) :
This plan should be repeated four times
1):6,7)’1:3, v* =2,b=30,7‘=10, k=2,n1 21,77,2:2,7'1,3:2, )\1=0, )\2'—"0, A3 =25
(1,6), (2,5), (4,5), (3,6), (2,3), (1,4)
This plan should be repeated five times
v=6m=3,v"=2,b=36,r=12,k=2,m=1,n2=2,n3=2, A1 =0, =0, 3=6
(1,6), (2,5), (4,5), (3,6), (2,3), (1,4)
This plan should be repeated six times
v=06m=3,v"=2,0b=42,r=14, k=2, m=1,n2=2,n3=2, M1 =0, =0, A3=7
(176): (275)’ (4a5)a (3,6), (2’3)7 (1:4)
This plan should be repeated seven times
v=6m=2,0v"=3,b=6,r=3,k=3,m=2,n=1,n3=2,A1=1,A=0,A=2
(1,2,6), (1,3,5), (2,3,4), (3:4,5), (2,4,6), (1,5,6)
v=6m=2,0v"=3,b=12,r=6,k=3,m =2, n2=1,n3=2, A1 =2, =0, A3=4
(17276)7 (17375), (2’374)7 (37475)1 (21476)’ (1’576)
This plan should be repeated twice
1):6,m=2,v* =3, b‘:18,7"=9, k:3,n1:2,n2=1,n3:2, )\1:3, )\2 ZO, )\326
(172?6)) (17375)7 (27374)7 (374’5>7 (274)6)7 (17576)
This plan should be repeated three times
v=06,m=20"=3,b=24,r=12,k=3,n1=2,ne=1,n3=2, A1 =4, Ao =0, 3 =8
(1,2,6), (1,3,5), (2,3,4), (3,4,5), (2,4,6), (1,5,6)
This plan should be repeated four times
v=06m=2,v"=3,0=30,r=15 k=3, nm=2,n2=1,n3=2, A\ =5,A=0 A=10
(1’276)7 (1,375)7 (27374)’ (31475)7 (27476)’ (17576)
This plan should be repeated five times
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v=86m=3 0" =2,b=6,r=4, k=4, n=1,n=2,n3=2, A1 =2 =2 A3 =3
(1,3,4,6), (2,3,4,5), (1,2,4,5), (1,2,3,6), (2,3,5,6), (1,4,5,6)
v=06,m=3,0"=2b=12,r=8 k=4, nm =1,n=2,n=2 A1 =4 =4, )3=6
(1,3,4,6), (2,3,4,5), (1,2,4,5), (1,2,3,6), (2,3,5,6), (1,4,5,6)
This plan should be repeated twice
v=06m=3,v"=2,b=18,r=12,k=4,n1=1,ne=2,n3 =2, A1 =6, Ao =6, 3 =9
(1,3,4,6), (2,3,4,5), (1,2,4,5), (1,2,3,6), (2,3,5,6), (1,4,5,6)
This plan should be repeated three times
’U:S, m=4, v* =2,b=24,’r=9, k=3,?’L1 :1, n2=3, ns =3, >\1 =0, )\2 =2, )\3:4
(1)658)7 (275’7)7 (3’678)7 (41577)7 (27415), (17376)’ (274’7)1 (17378)’ (1’4’6)’ (27315)7 (47677)7
(3)‘5’8)7 (21378), (17477)! (27578)7 (17677)3 (1)478)? (27317)7 (47578)7 (376)7)7 (2’677)7 (175’8)7
(2)3’6)7 (114,5)
1):8,m=2,1)* =4,b:6,1":3,]C=4,TL1:3,‘TL2:1,TL3:3, )\1 Zl, /\220, )\3 =2
- (1,2,7,8), (1,3,6,8), (1,4,6,7), (2,3,5,8), (2,4,5,7), (3,:4,5,6)
v=8m=20v"=4b=12r=6,k=4,n =3, no=1,m3=3, A1 =2, A2 =0, A3 =4
(1,2,7,8), (1,3,6,8), (1,4,6,7), (2,3,5,8), (2,4,5,7), (3,4,5,6)
This plan should be repeated twice
v=8m=2v"=4b=18,r=9k=4,n=3,n2o=1,n3=3,A1=3, =0, =6
(1,2,7,8), (1,3,6,8), (1,4,6,7), (2,3,5,8), (2,4,5,7), (3,4,5,6)
This plan should be repeated three times
v=8 m=2,v"=4,b=24,r=12,k=4,n =3, no=1,n3=3, M1 =4, Aa=0,A3 =8
(1,2,7,8), (1,3,6,8), (1,4,6,7), (2,3,5,8), (2,4,5,7), (3,4,5,6)
This plan should be repeated four times
v=8m=2,v"=4b=30,r=15k=4,n1 =3, na=1,n3 =3, A1 =5, A =0, 3 =10
(1727778)’ (1?37678>7 (174’6)7)’ (27375’8)’ (2’4’577)7 (374)576)
This plan should be repeated five times
v=8 m=4,v"=2,b=24,r=15k=5,nm=1,no=3,n3=3, A1 =6, A2=8, A3 =10
(1,3,5,6,8), (2,4,5,6,7), (1,3,6,7,8), (2,4,5,7,8), (1,2,4,5,7),(1,2,3,6,8), (2,3,4,5,7),
(1,3,4,6,8), (1,3,4,6,7), (2,3,4,5,8),(1,4,5,6,7), (2,3,5,6,8), (1,2,3,5,8), (1,2,4,6,7),
(2,3,5,7,8), (1,4,6,7.8), (1,4,5,7,8), (2,3,6,7,8), (1,3,4,5,8), (2,3,4,6,7), (1,2,3,6,7),
(1,2,4,5,8), (2,3,5,6,7), (1,4,5,6,8)
v=8m=4,v"=2b=24,r=12k=4,nm =1,n2=3,n3=3,\1 =6, Ao =6, A3 =4
(1v37738)3 (2a4w778)> (1737576)7 (2747576)7 <3a41517)1 (37416’8)1 (1721577)7 (1721678)7 (17576\7)1
(2,5,6,8), (1,3,4,7), (2,3,4,8), (3,5,7,8), (4,6,7,8), (1,2,3,5), (1,2,4,6), (1,3,4,5), (2,3,4,6),
(1,5,7.8), (2,6,7,8), (2,5,6,7), (4,5,6,8), (1,2,3,7), (1,2,4,8)
v=8m=4 v =2,b=24,r=6k=2n =1,ny=3,n3=3, A =0, A\g =0, A\g = 2
(178>’ (277)7 (376)7 (475)’ (455)’ (3,6)7 (2’7)’ (1,8)7 (1’6)’ (275)7 (477)) (378)7 (3’8)’ (4’7)7
(2)5)7 (176)’ (174)7 (273)7 (578)7 (679)’ (677)7 (578)7 (2’3)’ (1,4)
v=8m=4,0v"=2,b=48,r=12,k=2,n1=1,n2=3,n3 =3, A1 =0, Ao =0, A3 =4
(1>8)7 (217): (3:6)7 (4)5)7 (415)i (336>> (277)7 (1a8)v (176)1 (2a5)7 (477)a (378)7 (378)’ (4’7)’
(2,5), (1,6), (1,4), (2,3), (5,8), (6,9), (6,7), (5,8),( 2,3), (1,4)

This plan should be repeated twice
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v=10,m=5v"=2,0=20,r=4,k=2,m=1,n=4n3=4 A =0 A=0d=1
(1’10)7 (2’9)’ (879)’ (7710)7 (6’7)’ (518)7 (475)’ (376)Y (2"3)’ (1’4)7 (178)’ (277)’ (477)7
(3’8)7 (3’10)’ (4’9)’ (6’9)7 (5310)7 (275)’ (176)

v=10,m=50v"=2,b=40,7r=8 k=2,m =1, np=4,n3 =4, A\t =0, Ay = 0, Az = 2
(1’10)7 (279)7 (879)7 (7710)7 (6’7)’ (5’8)7 (475)7 (3’6)7 (273)’ (]74)’ (1’8)’ (2’7)7 (477)7
(3,8), (3,10), (4,9), (6,9), (5,10), (2,5), (1,6)
This plan should be repeated twice

v=10m=35,v"=2,0=60,r=12,k=2,n1=1,mo=4n3 =4, =0,A=0, \s =3
(1,10), (2,9), (8,9), (7,10), (6,7), (5.,8), (4,5), (3,6), (2,3), (1,4), (1,8), (2,7), (4,7),
(3’8)7 (3’10)’ (479)’ (619), (5710)’ (275)’ (1)6)
This plan should be repeated three times

v=10,m=35,0"=2,0=20,r=6k=3,n1=1,na=4,n3=4, A =0, Ag=1, Ag =2
(1,3,10), (2,4,9), (1,8,9), (2,7,10), (6,7,9), (5,8,10), (4,5,7), (3,6,8), (2,3,5), (1,4,6),
(1,5,8), (2,6,7), (1,4,7), (2,3,8), (3,7,10), (4,8,9), (3,6,9), (4,5,10), (2,5,9), (1,6,10)

1):10,m=5,1)*:2,1):40,7':12,]6:3,711:1,ﬂ‘2=4,ﬂ,3=4,k1 =O,)\2=2, )\3:4
(1,3,10), (2,4,9), (1,8,9), (2,7,10), (6,7,9), (5,8,10), (4,5,7), (3,6,8), (2,3,5), (1,4,6),
(1,5,8), (2,6,7), (1,4,7), (2,3,8), (3,7,10), (4,7,8),(3,6,9), (4,5,10), (2,5,9), (1,6,10)
This plan should be repeated twice

v=10,m=5,v"=2,b6=20,r=8 k=4 m=1,no=4,n3=4 M\ =0A=2 d3=4
(1,3,8,10), (2,4,7,9), (1,6,8,9), (2,5,7,10), (4,6,7,9), (3,5,8,10), (2,4,5,7), (1,3,6,8),
(2,3,5,10), (1,4,6,9), (1,4,5,8), (2,3,6,7), (1,4,7,10), (2,3,8,9), (3,6,7,10), (4,5,8,9),
(2,3,6,9), (1,4,5,10), (2,5,8,9), (1,6,7,10)

v=10,m=5,0"=2,b=20,r=8 k=4, nm=1,na=4n3=4 A =4, Aoa=2 A3 =3
(1,7,8,10), (2,7,8,9), (5,6,8,9), (5,6,7,10), (3.4,6,7), (3,4,5,8), (1,2,4,5), (1,2,3,6),
(2,3,9,10), (1,4,9,10), (1,3,4,8), (2,3,4,7), (4,7,9,10), (3,8,9,10), (3,5,6,10), (4,5,6,9),
(1,2,6,9), (1,2,5,10), (2,5,7,8), (1,6,7,8)

v=10,m=25,v"=2,b6=20,7=10,k=5,n =1, ma=4,n3 =4, A =4, da=4, A3=5
(1,5,6,8,10), (2,5,6,7,9), (3,4,6,8,9), (3,4,5,7,10), (1,2,4,6,7), (1,2,3,5,8), (2,4,5,9,10),
(1,3,6,9,10), (2,3,7,8,10), (1,4,7,8,9), (1,4,8,9,10), (2,3,7,9,10), (4,5,6,7,10), (3,5,6,8,9),
(1,2,3,6,10), (1,2,4,5,9), (2,6,7,8,9), (1,5,7,8,10), (2,3,4,5,8), (1,3,4,6,7)

v=10,m=5,v"=2,b=20,r=10,k=5,m =1,no=4,n3 =4, 1 =4, \a =6, \3 =3
(1,3,5,9,10), (2,4,6,9,10), (1,3,7,8,9), (2,4,7,8,10), (1,5,6,7,9), (2,5,6,8,10), (3,4,5,7,9),
(3,4,6,8,10), (1,2,3,5,7), (1,2,4,6,8), (1,5,7,8,9), (2,6,7,8,9), (1,3,4,5,7), (2,3,4,6,8),
(1,3,7,9,10), (2,4,8,9,10), (3,5,6,7,9), (4,5,6,8,10), (1,2,3,5,9), (1,2,4,6,10)

v=10,m=2,v"=50=20,r=10,k=5,n1 =4, no=1,m3=4, 2 =4 A =0,) =6
(1,2,8,9,10), (1,3,7,9,10), (1,4,7,8,10), (1,5,7,8,9), (2,3,6,9,10), (2,4,6,8,10), (2,5,6,8,9),
(3,4,6,7,10), (3,5,6,7,9), (4,5,6,7,8), (3,4,5,6,7), (2,4,5,6,8),
(2,3,5,6,9), (2,3,4,6,10), (1,4,5,7,8), (1,3,5,7,9), (1,3,4,7,10), (1,2,5,8,9), (1,2,4.8,10),
(1,2,3,9,10)

v=10,m=2,v"=5b=10,r=5k=5n=4,no=1,n3=4, A =3, Ao =0, Ag =2
(1,7,8,9,10), (2,6,8,9,10), (3,6,7,9,10), (4,6,7,8,10), (5,6,7,8,9), (2,3,4,5,6), (1,3,4,5,7),
(1,2,4,5,8), (1,2,3,5,9), (1,2,3,4,10)
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v=10,m=5,v"=2,0=20,r=12,k=6,n1=1,np=4,n3 =4, 2 =8 A =6, =7
(1,5,6,7,8,10), (2,5,6,7,8,9), (3,4,5,6,8,9), (3,4,5,6,7,10), (1,2,3,4,6,7), (1,2,3,4,5,8),
(1,2,3,4,5,9,10), (1,2,3,6,9,10), (2,3,7,8,9,10), (1,4,7,8,9,10), (1,3,4,8,9,10), (2,3,4,7,9,10),
(4,5,6,7,9,10), (3,5,6,8,9,10), (1,2,3,5,6,10), (1,2,4,5,6,9), (1,2,6,7,8,9), (1,2,5,7,8,10),
(2,3,4,5,7,8), (1,3,4,6,7,8)

v=10,m:5,1)*:2,b=20,7’:12,k=6,n1 :1,7'7.224,’”,3:4,/\1:4, /\2:6,/\3:8
(1,3,5,6,8,10), (2,4,5,6,7,9), (1,3,4,6,8,9), (2,3,4,5,7,10), (1,2,4,6,7,9), (1,2,3,5,8,10),
(2,4,5,7,9,10), (1,3,6,8,9,10), (2,3,5,7,8,10), (1,4,6,7,8,9), (1,4,5,8,9,10), (2,3,6,7,9,10),
(1,4,5,6,7,10), (2,3,5,6,8,9), (1,2,3,6,7,10), (1,2,4,5,8,9), (2,3,6,7,8,9), (1,4,5,7,8,10),
(2,3,4,5,8,9), (1,3,4,6,7,10)

v=10,m=5v"=2,b=20,r =14, k=7,n =4, n2=4,n3 =4, \y =8 A =9,

Az =10
(1,3,5,6,7,8,9), (2,4,5,6,7,8,9), (1,3,4,5,6,8,9), (2,3,4,5,6,7,10), (1,2,3,4,6,7,9),
(1,2,3,4,5,8,10), (1,2,4,5,7,9,10), (1,2,3,6,8,9,10), (2,3,5,7,8,9,10), (1,4,6,7,8,9,10),
(1,3,4,5,8,9,10), (2,3,4,6,7,9,10), (1,4,5,6,7,9,10), (2,3,5,6,8,9,10), (1,2,3,5,6,7,10),
(1,2,4,5,6,8,9), (1,2,3,6,7,8,9), (1,2,4,5,7,8,10), (2,3,4,5,7,8,10), (1,3,4,6,7,8,10)

v=12,m=4,v"=3,6=36,r=9,k=3,m=2,m=3,n3=6, =3, A =0, A3 =2
(1,2,12), (1,3,11), (2,3,10), (4,5,9), (4,6,8), (5,6,7), (6,7.,8), (5,7,9), (4,8,9), (3,10,11),
(2,10,12), (1,11,12), (1,2,9), (1,3,8), (2,3,7), (6,10,11), (5,10,12), (4,11,12), (4,5,12),
(4,6,11), (5,6,10), (3,7,8), (2,7,9), (1,8,9), (1,2,6), (1,3,5), (2,3,4), (7,8,12), (7,9,11)
(8,9,10), (9,10,11), (8,10,12), (7,11,12), (3,4,5), (2,4,6), (1,5,6)

v=12,m=3,v"=4,b=12,r=4, k=4, m =3, n2=2,m3 =6, \y =2, A\ =0, A\g =
(1,10,11,12), (2,9,11,12), (3,9,10,12), (4,9,10,11), (6,7,8,9), (5,7,8,10), (5,6,8,11),
(5,6,7,12), (2,3,4,5), (1,3,4,6), (1,2,4,7), (1,2,3,8)

v=12,m=3,v"=4,b=24,r=8k=4,n1=3,n2=2,n3=6, A\ =4, A =0, A\3 =2
(1,10,11,12), (2,9,11,12), (3,9,10,12), (4,9,10,11), (,6,7,8,9), (5,7,8,10), (5,6.8,11),
(5,6,7,12), (2,3,4,5), (1,3,4,6), (1,2,4,7), (1,2,3,8)
This plan should be repeated twice.

v=12,m=3,v"=4,b=36,r=12k=4,n =3, np=2,n3 =6, A1 =6, A2 =0, A3 =3
(1,10,11,12), (2,9,11,12}, (3,9,10,12), (4,9,10,11), (6,7,8,9), (5,7,8,10), (5,6,8,11),
(5,6,7,12), (2,3,4,5), (1,3,4,6), (1,2,4,7), (1,2,3,8)

This plan should be repeated three times.
v=12,m=3,v"=4,b=18,r=6,k=4,m=3,m2=2,n3=6, A1 =2, Aa=3, Aa=1
(1,2,5,6), (1,3,5,7), (1,4,5,8), (2,3,6,7), (2,4,6,8), (3,4,7,8), (1,2,9,10), (1,3,9,11),
(1,4,9,12), (2,3,10,11), (2,4,10,12), (3,4,11,12), (5,6,9,10), (5,7,9,11), (5,8,9,12),

(6,7,10,11), (6,8,10,12), (7,8,11,12)

v=12,m=3,v"=4,b=36,r=12,k=4,n =3, no=2,n3=6, 7 =4, Ay =6, Ag =2
(1,2,5,6), (1,3,5,7), (1,4,5,8), (2,3,6,7), (2,4,6,8), (3,4,7,8), (1,2,9,10), (1,3,9,11),
(1,4,9,12), (2,3,10,11), (2,4,10,12), (3,4,11,12), (5,6,9,10), (5,7,9,11), (5,8,9,12),
(6,8,9,12), (6,7,10,11), (6,8,10,12), (7,8,11,12)
This plan should be repeated twice.

)
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v=12,m=4,v"=3,b=36,r=12,k=4,n =2, ne =3, n3=6,A\1 =3, X2 =2, A3 =4
(1,2,9,12), (1,3,8,11), (2,3,7,10). (4,5,9,12), (4,6,8,11), (5,6,7,10), (3,6,7,8), (2,5,7.9),
(1,4,8,9), (3,6,10,11), (2,5,10,12), (1,4,11,12), 1,2,6,9), (1,3,5,8), (2,3,4,7), (6,9,10,11),
(5,8,10,12), (4,7,11,12), (3,4,5,12), (2,4,6,11), (1,5,6,10), (3,7,8,12), (2,7,9,11),
(1,8,9,10), (1,2,6,12), (1,3,5,11), (2,3,4,10), (6,7,8,12), (5,7,9,11), (4,8,9,10), (3,9,10,11).
(2,8,10,12), (3,9,10,11), (2,8,10,12), (1,7,11,12), (3,4,5,9), (2,4,6,8), (1,5,6,7)

v=12,m=4,v"=3,b=36r=15k=5n =2,n2=3,n3 =6, A1 =9, 2 =6, \s =4
(1,4,10,11,12), (2,5,10,11,12), (3,6,10,11,12), (1,4,7,8,9), (2,5,7,8,9), (3,6,7,8,9),
(4751677710)7 (475?618711)7 (4751679712)’( 1727317’10)7 (1)273’8)11)’ (1?27379712)7
(1,7,8,9,12), (2,7,8,9,11), (3,7,8,9,10), (1,4,5,6,10), (2,4,5,6,11), (3,4,5,6,12),
(4,7,10,11,12), (5,8,10,11,12), (6,9,10,11,12), (1,2,3,4,7), (1,2,3,5,8), (1,2,3,6,9),
(1,4,5,6,7), (2,4,5,6,8), (3,4,5,6,9), (1,7,10,11,12), (2,8,10,11,12), (3,9,10,11,12),
(4,7,8,9,10), (5,7,8,9,11), (6,7,8,9,12), (1,2,3.4,10), (1,2,3,5,11), (1,2,3,6,12)

v=12, m=2,v"=6,b=12,r=6,k=6,n1=5,np=1,n3 =5 A1 =4, =0, 3=2
(1,8,9,10,11,12), (2,7,9,10,11,12), (3,7,8,10,11,12), (4,7,8,9,11,12), (5,7,8,9,10,12),
(6,7,8,9,10,11), (2,3.4,5,6,7), (1,3,4,5,6,8), (1,2,4,5,6,9), (1,2,3,5,6,10), (1,2,3,4.6,11).
(1,2,3,4,5,12)

v=12,m=2,v"=6,b=24,r=12,k=6,n1 =5,ne=1,n3 =5 A1 =8, A=0,A3=4
(1,8,9,10,11,12), (2,7,9,10,11,12), (3,7,8,10,11,12), (4,7,8,9,11,12), (5,7,8,9,10,12),
(6,7,8,9,10,11), (2,3,4,5,6,7), (1,3,4,5,6,8), (1,2,4,5,6,9), (1,2,3,5,6,10), (1,2,3,4,6,11),
(1,2,3,4,5,12)
This plan should be repeated twice.

v=12,m=2,v"=6,b=20,r=10,k=6,n1 =5, no=1,n3 =5 A1 =4, =0 =56
(1,2,5,9,10,12), (1,2,6,9,10,11), (1,2,6,9,10,11), (1,3,4,8,11,12), (1,3,6,8,10,11),
(1,4,5,8,9,12), (2,3,4,7,11,12), (2,3,5,7,10,12), (2,4,6,7,9,11), (3,5,6,7,8,10),
(4,5,6,7,8,9), (3,4,6,7,8,11), (3,4,5,7,8,12), (2,5,6,7,9,10), (2,4,5,7.,9,12),
(2,3,6,7,10,11), (1,5,6,8,9,10), (1,4,6,8,9,11), (1,3,5,8,10,12), (1,2,4,9,11,12),
(1,2,3,10,11,12)

v=12,m=2,v"=6,6=30,7r=15,k=6,n1 =5, ne=1,n3=5 X A =7, A=0,A3 =8
(1,2,9,10,11,12), (1,3,8,10,11,12), (1,4,8,9,11,12), (1,5,8,9,10,12), (1,6,8,9,10,11),
(2,3,7,10,11,12), (2,4,7,9,11,12), (2,5,7,9,10,12), (2.6,7,9,10,11), (3,4,7,8,11,12),
(3,5,7,8,10,12), (3,6,7,8,10,11), (4,5,7,8,9,12), (4,6,7,8,9.11), (5,6,7,8,9,10),
(3/4,5,6,7,8), (2,4,5,6,7,9), (2,3,5,6,7,10), (2,3,4,6,7,11), (2,3,4,5,7,12),
(1,4,5,6,8,9), (1,3,5,6,8,10), (1,3,4,6,8,11), (1,3,4,5,8,12), (1,2,5,6,9,10),
(1,2,4,6,9,11), (1,2,4,5,9,12), (1,2,3,6,10,11), (1,2,3,5,10,12), (1,2,3,4,11,12)

v=12,m=3,0v"=4,b=12,r=6,k=6,n1=3,np=2,n3=6, A\, =4, \a =3, A3 =2
(1,5,9,10,11,12), (2,6,9,10,11,12), (3,7,9,10,11,12), (4,8,9,10,11,12), (1,5,6,7,8,9),
(2,5,6,7,8,10), (3,5,6,7,8,11), (4,5,6,7,8,12), (1,2,3,4,5,9), (1,2,3,4,6,10), (1,2,3,4,7.11),
(1,2,3,4,8,12)

v=12,m=3,0v"=4,b=24,r=12k=6,n1 =3, n0o=2,n3 =6, A =8 Ay =6, 3 =4
(1,5,9,10,11,12), (2,6,9,10,11,12), (3,7,9,10,11,12), (4,8,9,10,11,12), (1,5,6,7,8,9),
(2,5,6,7,8,10), (3,5,6,7,8,11), (4,5,6,7,8,12), (1,2,3,4,5,9), (1,2,3,4,6,10), (1,2,3,4,7.11),
(1,2,3,4,8,12)
This plan should be repeated twice.
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v=12,m=3,v"=4,b=18,r=9,k=6,n =3, no=2,n3=6, A\ =3, =3 =5
(1,2,5,6,11,12), (1,3,5,7,10,12), (1,4,5,8,10,11), (2,3,6,7,9,12), (2,4,6,8,9,11),
(3,4,7,8,9,10), (1,2,7,8,9,10), (1,3,6,8,9,10), (1,4,6,7,9,12), (2,3,5,8,10,11),
(2,4,5,7,10,12), (3,4,5,6,11,12), (3,4,5,6,9,10), (2,4,5,7,9,11), (2,3,5,8,9,12),
(1,4,6,7,10,11), (1,3,6,8,10,12), (1,2,7,8,11,12)

v=12,m=6,v"=2,b6=30,r=15k=6,n1 =1,m2 =5n3 =5 A =10, A2 = 7,

A3 =6
(1,3,9,10,11,12), (2,4,9,10,11,12), (1,5,7,8,11,12), (2,6,7,8,11,12), (1,7,8,9,10,12),
(2,7,8,9,10,12), (1,5,6,9,11,12), (2,5,6,9,11,12), (1,5,6,7,9,10), (2,5,6,8,9,10),
(5,6,7,8,9,11), (5,6,7,8,10,12), (3,4,5,9,11,12), (3,4,6,10,11,12), (3,4,7,9,10,11),
(3,4,8,9,10,12), (3,4,5,7,8,11), (3,4,6,7,8,12), (3,4,5,6,7,9), (3,4,5,6,8,10),
(1,2,3,5,11,12), (1,2,4,6,11,12), (1,2,3,7,9,10), (1,2,4,8,9,10),(1,2,3,7,8,11),
(1,2,4,7,8,12), (1,2,3,5,6,9), (1,2,4,5,6,10), (1,2,3,4,5,7), (1,2,3,4,6,8)

v=12,m=3,0v"=4,b=12,r=8 k=81 3,m2=2,n3=6, A0 =6, A2=4, As=5
(1,5,6,7,8,10,11,12), (2,5,6,7,8,9,11,12), (3,5,6,7,8,9,10,12), (4,5,6,7,8,9,10,11),
(1,2,3,4,6,7,8,9), (1,2,3,4,5,7,8,10), (1,2,3,4,5,6,8,11), (1,2,3,4,5,6,7,12),
(2,3,4,5,9,10,11,12), (1,3,4,6,9,10,11,12), (1,2,4,7,9,10,11,12), (1,2,3,8,9,10,11,12)

v=12,m=38,v"=4b0=18,r=12k=8n1 =3, na=2,n3 =6, A =8 A =9, A3 =7
(1,2,5,6,9,10,11,12), (1,3,5,7,9,10,11,12), (1,4,5,8,9,10,11,12), (2,3,6,7,9,10,11,12),
(2,4,6,8,9,10,11,12), (3,4,7,8,9,10,11,12), (1,2,5,6,7,8,9,10), (1,3,5,6,7,8,9,11),
(1,4,5,6,7,8,9,12), (2,3,5,6,7,8,10,11), (2,4,5,6,7,8,10,11,12), (3,4,5,6,7,8,11,12),
(1,2,3,4,5,6,9,11), (1,2,3,4,5,7,9,11), (1,2,3,4,5,8,9,12), (1,2,3,4,6,7,10,11),
(1,2,3,4,6,8,10,12), (1,2,3,4,7,8,11,12).
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Konstrukcja ukltadéw blokowych typu prostokatnego przydatnych w
doswiadczeniach dwuczynnikowych

STRESZCZENIE

Praca dotyczy planowania doswiadczen w czeSciowo zréwnowazonych uktadach bloko-
wych niekompletnych o prostokatnym schemacie partnerstwa z trzema klasami part-
neréw (RT PBIB). Podano pewne metody konstrukeji uktadéw RT PBIB, ktére moga
znalezé zastosowania w dowolnych doswiadczeniach dwuczynnikowych. Macierze in-
cydencji tych uktadéw mogg byt przedstawione jako rozszerzenie binarnego iloczynu
Kroneckera odpowiednio dobranych macierzy. Zwrécono uwage na statystyczne wia-
snoéci tych uktadéw, zwigzane z estymacjg bazowych i elementarnych kontrastéw
obiektowych. Zamieszczono katalog ukladéw RT PBIB dla 6, 8, 10 i 12 obiektéw,
ktoérych liczba replikacji r spelnia warunek 2 < r < 15.

SLOWA KLUCZOWE: do$wiadczenia dwuczynnikowe, iloczyn Kroneckera macierzy, ma-
cierze zréwnowazenia, uktady RT PBIB



